5 research outputs found

    Revlex-Initial 0/1-Polytopes

    Full text link
    We introduce revlex-initial 0/1-polytopes as the convex hulls of reverse-lexicographically initial subsets of 0/1-vectors. These polytopes are special knapsack-polytopes. It turns out that they have remarkable extremal properties. In particular, we use these polytopes in order to prove that the minimum numbers f(d, n) of facets and the minimum average degree a(d, n) of the graph of a d-dimensional 0/1-polytope with n vertices satisfy f(d, n) <= 3d and a(d, n) <= d + 4. We furthermore show that, despite the sparsity of their graphs, revlex-initial 0/1-polytopes satisfy a conjecture due to Mihail and Vazirani, claiming that the graphs of 0/1-polytopes have edge-expansion at least one.Comment: Accepted for publication in J. Comb. Theory Ser. A; 24 pages; simplified proof of Theorem 1; corrected and improved version of Theorem 4 (the average degree is now bounded by d+4 instead of d+8); several minor corrections suggested by the referee

    The Simplex Algorithm in Dimension Three

    No full text
    We investigate the worst-case behavior of the simplex algorithm on linear programs with 3 variables, that is, on 3-dimensional simple polytopes. Among the pivot rules that we consider, the “random edge” rule yields the best asymptotic behavior as well as the most complicated analysis. All other rules turn out to be much easier to study, but also produce worse results: Most of them show essentially worst-possible behavior; this includes both Kalai’s “random-facet” rule, which is known to be subexponential without dimension restriction, as well as Zadeh’s deterministic history-dependent rule, for which no non-polynomial instances in general dimensions have been found so far
    corecore